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Modern theories of particle physics have now progressed sufficiently that it 

is possible to compute the nature of small irregularities that may explain the 

origin of galaxies. Although these calculations are hardly definitive, they have 

succeeded in drawing attention to a particular set of initial conditions, namely 

adiabatic scale-invariant Gaussian fluctuations superimposed on an 0 = 1 Friedman 

background (see e.g. Guth and Pi, 1982; Hawking, 1982; Bardeen, Steinhardt and 

Turner, 1983). 

Such fluctuations should generate a highly specific pattern in the microwave 

background radiation. Th_e statistical properties of the microwave background 

anisotropies (e.g. the temperature autocorrelation function, number density of 

hot spots) could therefore provide a clear and definitive test of theories of the 

early universe. 

The failure to observe fluctuations in the background radiation has already 

led to interesting constraints on theories of galaxy formation. Present upper 

limits on temperature anisotropies on small angular scales (!J.T/T .$ 3xl0-5, 6.& = 

4.5', Uson and Wilkinson 1984a,b) essentially exclude models in which the density 

of the universe is dominated by ordinary baryonic matter (Wilson and Silk, 1981), 

provided that reionization of the inter-galactic medium at redshifts z > 30 has 

not been effective at erasing the background fluctuations. Even if we assume 

that exotic weakly interacting dark matter, such as gravitinos, photinos, axions 

etc., dominate over the baryonic component, our failure to observe small-scale 

anisotropies implies a relatively high density universe with 0 ~ 0.2 (Bond and 

Efstathiou, 1984; Vittorio and Silk, 1984; Efstathiou and Bond, 1986a). More 

powerful constraints could be obtained from sensitive experiments on scales & > 
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1°, since anisotropies on these angular scales would be unaffected by secondary 

reionization and are closely related to the shape of the initial fluctuation 

spectrum. 

In this article we will attempt to give the reader a feel for the 

characterstic features of the background radiation pattern expected from 

scale-invariant perturbations by generating numerical realizations of the 

radiation intensity. These allow us to translate the relatively complex 

calculations of the radiation fluctuations into a form that is more easily 

digestible by non-experts. It will become apparent that many of the background 

anisotropy experiments have not been designed to maximise the signal expected 

from scale-invariant fluctuations, and it will be easy to see how (in theory!) 

better experiments could be constructed. In addition, it is relatively 

straightforward to visualize how the radiation pattern would be altered by 

departures from a 

statistics of the 

Efstathiou (1986). 

scale-invariant spectrum. A technical account of 

microwave background fluctuations is given by Bond 

2. The Autocorrelation Function of the Temperature Fluctuations 

the 

and 

It is natural to express the temperature pattern on the celestial sphere 

using spherical harmonics, 

( 1 ) 

Now consider the temperature autocorrelation function 

I\ I\ 
Y1·Y2 =cos.& ( 2) 

where the brackets denote an ensemble average. We expect the coefficients a in 

(1) to be statistically independent. Thus we define a spectral coefficient 

( ) 1 \ I an m 12 
c T SI, = ( 2Sl+ 1) l iv 

( 3) 

m 

which is related to the autocorrelation function according to 

CT(&) = 4~ l (2Sl+1 )cT(Sl) PQ, (cos&) (4) 

SI, 
Since the photons are coupled to the matter by Thomson scattering, we expect 

the fluctuating part of the radiation field to be linearly polarized (Kaiser, 

1983). This may be characterized by the Stokes parameter Q (in a suitably chosen 

coordinate system) fixing the degree of polarization at each point on the sky. 
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We may then define an analogous autocorrelation function Cp(&) with 

power-spectrum cp(.R.) to describe the statistical properties of the fractional 

polarization. 

If we now assume that the initial fluctuations are Gaussian, then the 
m 

spherical harmonic coefficients at will be Gaussian distributed with zero mean. 

Thus, if we can determine either the autocorrelation functions C(&) or the 

power-spectra c(.R.), we will be able to specify statistically almost all aspects 

of the radiation pattern. 

The computation of C(&) proceeds as follows (see Bond and Efstathiou, 1986, 

for a detailed account). We specify the perturbation to the photon distribution 

function of 
y 

polarization 

= (TaF/aT) !:JT/4 

amplitude. Here, 

together 

f is 

with a similar 

the unperturbed 

expression for the 

photon distribution 

function. If the background metric is assumed to be flat, we can decompose the 

initial perturbations into a sum of plane waves. The Boltzmann equation for the 

radiation, including gravitational terms and Thomson scattering, is then solved 

numerically. The evolution of !:JT depends on the direction of propagation of the 

photons relative to the wave vector k. Therefore, we expand l:JT in terms of 

Legendre polynomials 

!:JT(k,µ) = l (2.R.+1)a.R. (k,T) P.R.(µ) , 

.R. 

µ = cos & (5) 

keeping only as many terms as are necessary for accurate solutions (.R.max kT). 

In (5) T is conformal time T = f dt/a , where a is the scale-factor of the 

background metric. The autocorrelation function is given by 

0 .R. 

and the power-spectrum is given by 

v CX> 

cT(.R.) = 8~ J la.R.(k,T0 )l
2 

k
2
dk 

0 

(6) 

(7) 

where T denotes the present time and we assume that the perturbations are 
0 

periodic in a large box of volume Vx. 

At large angular scales (greater than the width of the last scattering 

surface & > 1 °) , the dominant contribution to the radiation anisotropy arises 

from the Sachs-Wolfe effect (Sachs and Wolfe, 1967; Peebles, 1982). This gives 
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(8) 

where h is the trace of the metric perturbation and dots denote derivatives with 

respect to T If the initial fluctuation spectrum is scale-invariant 

C<!h(Ti)! 2 > <X k ), the autocorrelation function at large angular scales will be 

given by 

(9) 

where a 2 is the amplitude of the quadrupole component (equation (1)) and we have 

subtracted the contribution from the monopole and dipole terms. (The monopole 

term is, of course, unobservable; the dipole term in the observed radiation 

pattern is dependent on our motion relative to the comoving frame which we know 

is influenced by the distribution of nearby matter). 

If the initial spectrum is not scale invariant,<!hi 2 >oCkn, the radiation 

power spectrum is 

( 10) 

for n < 3. (If n > 3, the power-spectrum at all R, is dependent on the exact 

behaviour of the radiation field at large wavenumbers). Evidently if R, >> 1, 

crCi) o< R, ( n-3). Thus, the large-angle properties of the radiation field should 

be a sensitive indicator of the form of the initial fluctuation spectrum. 

On !tsmaller angular scales, Thomson scattering is important and we must 

resort to a numerical solution of the Boltzmann equation to determine c(&). In 

Figure (1) we show autocorrelation functions in an 0 1 model with 

scale-invariant adiabatic fluctuations in which the present density is dominated 

by cold dark matter ( O = l); the Hubble constant is h = 0.75 (h = H
0

/75 km s-l 

Mpc-1), and baryons contribute OB = 0.03. The corresponding power-spectra are 

shown in Figure (2). Notice the high degree of coherence in Cr(&); the amplitude 

falls by only an order of magnitude between 0 and ~ 9°. This is a key feature of 

the radiation pattern arising from scale-invariant fluctuations. At larger 

angles, the correlation function follows the double-humped behaviour of equation 

(9). In contrast, the polarization is correlated only on small scales ( ~ 10'). 
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Figure 1. Autocorrelation function for Figure 2. Power-spectra corresponding 

the temperature fluctuations (solid line) to the autocorrelation functions shown 

and for the polarization fluctuations in Figure 1. 

(dashed line) in an Q = 1 cold dark 

matter model with scale-invariant 

adiabatic fluctuations. 

3. Numerical Simulations 

Having derived the power-spectra, we can now make simulated maps of the sky 

via equation (1). However, for large 9,, this is impractical since evaluating 

high-order spherical harmonics is extremely demanding computationally. Instead, 

we consider the small-angle limit of equation (4) 

QT ( & ) ~ 4~ l (ZR-+1) cT(R- ) Jo(R-& ) 
9, 

( 11 ) 

/\ 
If the dominant contribution to CT comes from 9, >> 1, or if the sum is restricted 

to high~, then equ. (11) corresponds to a two-dimensional Fourier transform. A 
/\ 

Euclidean map with expected correlation function Cr can thus be generated by 

selecting the amplitudes of c(9,)t from a Gaussian distribution and assigning 

phases at random in the interval (0,2n). Simulations of the power-spectra are 

shown in Figure (3). The resulting maps of a square patch of sky of side 10° are 

shown in Figures (4) and (5). These maps show clearly the features described 

above, namely the high degree of spatial correlation of the total radiation 

intensity and the small-scale coherence of the polarization. 
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Figure 3. The filled circles show the power-spectra of a numerical simulation 

with Gaussian statistics designed to match the theoretical spectra (solid lines). 

(a) shows the total radiation fluctuation spectrum and (b) shows the polarization 

spectrum. 

Even though these maps represent a cold dark matter dominated Universe with n = 

1, the r.m.s. fluctuation in the background radiation should be within 

detectable limits if galaxies and clusters formed by gravitational instability. 

The amplitude of the initial fluctuation spectrum may be fixed by comparing with 

the second moment of the galaxy correlation function J 3 = J~ x 2 dx integrated out 
-1 to some suitably large scale (x0~ lOh Mpc, see Bond and Efstathiou, 1984). We 

will use this procedure in the numerical estimates quoted below. However, this 

may lead us to overestimate the temperature anisotropy, perhaps by as much as a 

factor of two, if galaxies are more clustered than the mass distribution as seems 

necessary for this particular scenario (Bardeen, 1986; Kaiser, 1986, Davis et. 

al. 1985). With this proviso, the "galaxies trace the mass" assumption gives an 

r.m.s. temperature fluctuation, at a point, of l.6xl0-5 and an r.m.s. 
-6 fractional polarization of l.OxlO • Lowering h will cause these numbers to 

increase (roughly like h-l); varying OB will not cause a significant change 

provided OB ~ 0.2. 

Uson and Wilkinson's experiment does not provide a strong constraint on this 

model because the beam throw of their radio telescope (4.5') is very much smaller 

than the typical size of the fluctuations shown in Figure 4. An analogy can be 

drawn between fine-scale beam-switching experiments and an ant crawling over a 



Pictures of the Microwave Background Fluctuations 109 

Figure 4. Simulation of the fluctuations in the radiation brightness for the 

scale-invariant cold dark matter model described in the text. The simulated 

square corresponds to an area of 10°x10°. 
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Figure 5. Map of the fractional polarization in the patch of sky shown in 

Figure (4). 
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molehill - the ant is aware of the local gradient but not its absolute height 

above ground level. · The particular three-beam configuration used by Uson and 

Wilkinson is somewhat worse than this analogy suggests since it effectively 

measures the second derivative of the sky fluctuations. The model shown in 

Figure 4 predicts 2.8xl0-6 for the Uson-Wilkinson experimental set-up. 

For scale-invariant initial conditions, the quadrupole component a 2 should 

be considerably smaller than the r.m.s. fluctutation at a point (eq. (9), Figure 

1). The current limits are a 2 < 1. lxl0-4 (e.g. Fixsen et. al., 1983), and are 

( -6) well above the theoretical prediction a 2 4.9xl0 • Subtraction of the 

background signal from our Galaxy is a major limiting factor in such large-angle 

experiments and a substantial improvement in the quadrupole limit would seem a 

formidable task. The large-angle experiments are capable of providing anisotropy 

limits on all scales larger than the effective beam-width (typically 25°). For 

example, Fixsen. et. al. quote an upper-limit of CT(-&)t < 4xl0-S on scales 

10°< -& < 180° after subtraction of the dipole component. Provided background 

emission can be adequately subtracted (perhaps by using multi-frequency 

observations) such limits could lead to strong constraints on scale-invariant 

fluctuations. 

Valuable results are likely to be achieved by experiments that beam-switch 

on scales of -& (, 1°, i.e. comparable to the sizes of typical clumps shown in 

Figure (4). As mentioned in Section (1), reionization could erase radiation 

anisotropies on angular scales of at most a few degrees, thus providing an 

additional reason to focus experiments on relatively large angular scales. The 

most sensitive experiment at intermediate angular scales (-& = 6°, Melchiorri et. 

al., 1981) reports a detection at the le"'.:el (4.l±0.7)xl0-5 • The correponding 

prediction for the model in Figure (4) is ~lxl0-5 (with an uncertainty arising 

from the beam width of this experiment), so it would seem unlikely that their 

detection is caused by the anisotropies described here, though the numbers are 

interestingly close. (It is quite plausible that their signal is caused by 

emission from dust in our ·Galaxy). The lack of experiments at these angular 

scales is partly a result of technical difficulties: a horn with a beam width of 

1 ° would be several feet long and therefore cumbersome in a balloon borne 

experiment; an alternative might be to use a small dish, either in a balloon 

borne experiment or at a high altitude site. Another strategy might be to use a 

dedicated low-resolution interferometer capable of surveying a re la ti vely large 

patch of sky, say l 0 xl 0 (Lasenby, private communication). There is considerable 

scope for novel experiments at angular scales of one to a few degrees and it 

seems plausible that they could achieve the level of sensi ti vi ty required to 

detect anisotropies from scale-invariant initial conditions. 
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The polarization pattern might also provide an interesting direction for 

future experiments with large radio telescopes. Although the effect is 

considerably smaller that the total fluctuation, no beam switching is necessary 

to determine a temperature difference. Further, the contribution to the 

polarization by discrete sources is likely to be very small. The main limiting 

factor in such an experiment would result from instrumental polarization such as 

asymmetries in the antenna feeds. One way of removing these effects, to first 

order, might be to difference the results from well separated patches of sky. 

In summary, we have attempted to show how a particular set of initial 

conditions in the early uni verse leads to a specific and therefore recognisable 

pattern in the microwave background radiation. An alternative way of testing 

initial conditions is to follow the non-linear evolution of galaxy clustering 

(e.g. Davjs et. al., 1985). However, this approach is unlikely to lead to 

conclusive results because we can never be sure that the galaxy distribution is a 

faithful representation of the mass distribution. The microwave background 

radiation provides a much more direct test. A positive detection of the 

radiation anisotropies would revolutionise the study of galaxy formation and 

would have profound implications for particle physics. 
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